miércoles, 21 de noviembre de 2018

MÁQUINAS TÉRMICAS

MÁQUINAS TÉRMICAS
Resultado de imagen para maquinas termicas
Una máquina térmica es un conjunto de elementos mecánicos que permite intercambiar energía, generalmente a través de un eje, mediante la variación de energía de un fluido que varía su densidadsignificativamente al atravesar la máquina. Se trata de una máquina de fluido en la que varía el volumen específico del fluido en tal magnitud que los efectos mecánicos y los efectos térmicos son interdependientes.
Por el contrario, en una máquina hidráulica, que es otro tipo de máquina de fluido, la variación de densidad es suficientemente pequeña como para poder desacoplar el análisis de los efectos mecánicos y el análisis de los efectos térmicos, llegando a despreciar los efectos térmicos en gran parte de los casos. Tal es el caso de una bomba hidráulica, a través de la cual pasa líquido. Alejándose de lo que indica la etimología de la palabra «hidráulica», también puede considerarse como máquina hidráulica un ventilador, pues, aunque el aire es un fluido compresible, la variación de volumen específico no es muy significativa con el propósito de que no se desprenda la capa límite.
En una máquina térmica, la compresibilidad del fluido no es despreciable y es necesario considerar su influencia en la transformación de energía.

Máquina térmica y motor térmico

En un principio se podría definir a una máquina térmica como un dispositivo, equipo o una instalación destinada a la producción de trabajo en virtud de un aporte calórico. Aunque en algunas definiciones se identifican como sinónimos los términos «máquina térmica motora» y «motor térmico», en otras se diferencian ambos conceptos. Al diferenciarlos, se considera que un motor térmico es un conjunto de elementos mecánicos que permite obtener energía mecánica a partir de la energía térmica obtenida mediante una reacción de combustión o una reacción nuclear. Un motor térmico dispone de lo necesario para obtener energía térmica, mientras que una máquina térmica motora necesita energía térmica para funcionar, mediante un fluido que dispone de más energía a la entrada que a la salida.1

Clasificación

Según el sentido de transferencia de energía

Las máquinas térmicas pueden clasificarse, según el sentido de transferencia de energía, en:
  • Máquinas térmicas motoras, en las cuales la energía del fluido disminuye al atravesar la máquina, obteniéndose energía mecánica en el eje.
  • Máquinas térmicas generadoras, en las cuales la energía del fluido aumenta al atravesar la máquina, precisándose energía mecánica en el eje.

Según el principio de funcionamiento

Atendiendo al principio de funcionamiento, las máquinas térmicas se clasifican en:
  • Máquinas volumétricas o máquinas de desplazamiento positivo, cuyo funcionamiento está basado en principios mecánicos e hidrostáticos, de manera que el fluido en algún instante está contenido en un volumen limitado por los elementos de la máquina. En este tipo de máquinas el flujo es pulsatorio. Se dividen a su vez en dos tipos según el movimiento del órgano propulsor: alternativas, cuyo movimiento es rectilíneo; y rotativas, cuyo movimiento es circular.
  • Turbomáquinas, cuyo funcionamiento está basado en el intercambio de cantidad de movimientoentre el fluido y un rodete. En estas máquinas el flujo es continuo.

ENERGÍA INTERNA

ENERGÍA INTERNA

En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:
  • la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que forman un cuerpo respecto al centro de masas del sistema,
  • la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.1
La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.
Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomos que constituyen el sistema (de sus energías de traslación, rotación y vibración) y de la energía potencial intermolecular (debida a las fuerzas intermoleculares) e intramolecular de la energía de enlace.
  • En un gas ideal monoatómico bastará con considerar la energía cinética de traslación de sus átomos.
  • En un gas ideal poliatómico, deberemos considerar además la energía vibracional y rotacional de las mismas.
  • En un líquido o sólido deberemos añadir la energía potencial que representa las interacciones moleculares.
Desde el punto de vista de la termodinámica, en un sistema cerrado (o sea, de paredes impermeables), la variación total de energía interna es igual a la suma de las cantidades de energía comunicadas al sistema en forma de calor y de trabajo  (en termodinámica se considera el trabajo positivo cuando este entra en el sistema termodinámico, negativo cuando sale). Aunque el calor transmitido depende del proceso en cuestión, la variación de energía interna es independiente del proceso, sólo depende del estado inicial y final, por lo que se dice que es una función de estado. Del mismo modo  es una diferencial exacta, a diferencia de , que depende del proceso.

El enfoque termodinámico: la ecuación fundamental

En termodinámica se deduce la existencia2​ de una ecuación de la forma de la gravedad
conocida como ecuación fundamental en representación energética, siendo SV y N la entropía, el volumen y la cantidad de sustanciaen moles, respectivamente.
La importancia de la misma radica en que concentra en una sola ecuación toda la información termodinámica de un sistema. La obtención de resultados concretos a partir de la misma se convierte entonces en un proceso sistemático.

Si calculamos su diferencial:

se definen sus derivadas parciales:
  • la temperatura 
  • la presión 
  • el potencial químico .

Como T, P y  son derivadas parciales de U, serán funciones de las mismas variables que U:
Estas relaciones reciben el nombre de ecuaciones de estado. Por lo general no se dispone de la ecuación fundamental de un sistema. En ese caso sus sustitución por el conjunto de todas las ecuaciones de estado proporcionaría una información equivalente, aunque a menudo debamos conformarnos con un subconjunto de las mismas.

Algunas variaciones de la energía interna

Al aumentar la temperatura de un sistema, aumenta su energía interna, reflejada en el aumento de la energía térmica del sistema completo, o de la materia estudiada.
Convencionalmente, cuando se produce una variación de la energía interna manifestada en la variación del calor que puede ser cedido, mantenido o absorbido se puede medir este cambio en la energía interna indirectamente por la variación de la temperatura de la materia.

Variación sin cambio de estado

Sin que se modifique el estado de la materia que compone el sistema, se habla de variación de la energía interna sensible o calor sensible y se puede calcular de acuerdo a los siguientes parámetros;
Donde cada término con sus unidades en el Sistema Internacional son:
Q = es la variación de energía o de calor del sistema en un tiempo definido (J).
Ce = calor específico de la materia (J/kg·K).
m = masa.
= temperatura final del sistema - temperatura inicial (K).

Ejemplo

Calcular la energía total de un sistema compuesto de 1 g de agua en condiciones normales, es decir a la altura del mar, una atmósfera de presión y a 14 °C para llevarlo a 15º C, sabiendo que el Ce del agua es = 1 [cal/g·°C].
Aplicando la fórmula  y reemplazando los valores, tenemos;
Q = 1 [cal/g·°C] · 1 [g] · (15 - 14) [°C] = 1 [cal]

Energía cinética media de un gas ideal

K = Constante de Boltzmann = 1,38·10-23 J/K
=Velocidad media de la molécula
Las propiedades termodinámicas de un gas ideal pueden ser descritas por dos ecuaciones:
La ecuación de estado de un gas ideal clásico que es la ley de los gases ideales
y la energía interna a volumen constante de un gas ideal que queda determinada por la expresión:
donde
La cantidad de gas en J·K−1 es  donde
  • N es el número de partículas de gas
  •  es la constante de Boltzmann (1.381×10−23J·K−1).
La distribución de probabilidad de las partículas por velocidad o energía queda determinada por la distribución de Boltzmann.

Variación con modificación de la composición química

Si se produce alteración de la estructura atómica-molecular, como es el caso de las reacciones químicas o cambio de estado, se habla de variación de la energía interna química o variación de la energía interna latente.
Esta condición de cambio de estado se puede calcular de acuerdo a:
Donde  = Coeficiente de cambio de estado, medido en [J/kg]

Variación nuclear

Finalmente, en las reacciones de fisión y fusión se habla de energía interna nuclear.

CAMBIO DE ESTADO

CAMBIO DE ESTADO

En física y química se denomina cambio de estado a la evolución de la materia entre varios estados de agregación sin que ocurra un cambio en su composición.1​ Los tres estados más estudiados y comunes en la Tierra son el sólido, el líquido y el gaseoso; no obstante, el estado de agregación más común en el Universo es el plasma, material del que están compuestas las estrellas(si se descarta la materia oscura).

Los tipos de cambio de estado

Son los procesos en los que un estado de la materia cambia a otro manteniendo una semejanza en su composición. A continuación se describen los diferentes cambios de estado o transformaciones de fase de la materia:1
  • Fusión: Es el paso de un sólido al estado líquido por medio del calor; durante este proceso endotérmico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperaturapermanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Dichas moléculas se moverán en una forma independiente, transformándose en un líquido. Un ejemplo podría ser un hielo derritiéndose, pues pasa de estado sólido al líquido.
  • Solidificación: Es el paso de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
  • Vaporización y ebullición: Son los procesos físicos en los que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión al continuar calentando el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperatura del gas.
  • Condensación: Se denomina condensación al cambio de estado de la materia que se pasa de forma gaseosa a forma líquida. Es el proceso inverso a la vaporización. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
  • Sublimación: Es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
  • Desionización: Es el cambio de un plasma a gas.
Es importante hacer notar que en todas las transformaciones de fase de las sustancias, éstas no se transforman en otras sustancias, solo cambia su estado físico.
Los cambios de estado están divididos generalmente en dos tipos: progresivos y regresivos.
  • Cambios progresivos: Vaporización, fusión y sublimación progresiva.
  • Cambios regresivos: Condensación, solidificación y sublimación regresiva
La siguiente tabla indica cómo se denominan los cambios de estado:
Inicial\FinalSólidoLíquidoGasPlasma
Sólidofusiónsublimación, sublimación progresiva o sublimación directa
Líquidosolidificaciónevaporación o ebullición
Gassublimación inversa, regresiva o deposicióncondensación y licuefacción (licuación)Ionización
PlasmaDesionización

También se puede ver claramente con el siguiente gráfico:
Estados.svg

Punto de fusión

Puntos de fusión (en azul) y puntos de ebullición (en rosado) de los ocho primeros ácidos carboxílicos (°C).
El punto de fusión es la temperatura a la cual la materia pasa de estado sólido a estado líquido, es decir, se funde.1
Al efecto de fundir un metal se le llama fusión (no podemos confundirlo con el punto de fusión). También se suele denominar fusión al efecto de licuar o derretir una sustancia sólida, congelada o pastosa, en líquida.
En la mayoría de las sustancias, el punto de fusión y de congelación, son iguales. Pero esto no siempre es así: por ejemplo, el agar-agar se funde a 85 °C y se solidifica a partir de los 31 °C a 40 °C; este proceso se conoce como histéresis.
En geología, se denomina punto de solidus a la temperatura en la que empieza a fundirse una rocay punto de liquidus a la temperatura en la que la fusión es total. Tanto la presencia de agua como una disminución de la presión pueden rebajar los puntos de solidus y liquidus de una roca, facilitando la formación de magmas sin aumentar la temperatura.2​.

Punto de ebullición

El punto de ebullición es aquella temperatura en la cual la materia cambia de estado líquido a gaseoso1​. Expresado de otra manera, en un líquido, el punto de ebullición es la temperatura a la cual la presión de vapor del líquido es igual a la presión del medio que rodea al líquido. En esas condiciones se puede formar vapor en cualquier punto del líquido.
La temperatura de una sustancia o cuerpo depende de la energía cinética media de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar. Este incremento de energía constituye un intercambio de calor que da lugar al aumento de la entropía del sistema (tendencia al desorden de las partículas que lo componen).
El punto de ebullición depende de la masa molecular de la sustancia y del tipo de las fuerzas intermoleculares de esta sustancia. Para ello se debe determinar si la sustancia es covalente polar, covalente no polar, y determinar el tipo de enlaces (dipolo permanente - dipolo inducido o puentes de hidrógeno).

MÁQUINAS TÉRMICAS

MÁQUINAS TÉRMICAS Una  máquina térmica  es un conjunto de elementos mecánicos que permite intercambiar  energía , generalmente a través...